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SUMMARY 

An equation is derived that gives the area under the curve of the stop-peaks, 
as a function of the time of the stop and of the carrier gas flow-rate, in non-equilibrium 
stopped-flow gas chromatography. Adsorption-desorption is assumed to take place 
at two kinds of reactive sites. It is shown that, with certain approximations, the equa- 
tion derived can be used to determine the rate constants for des&ption and the parti- 
tion coefficients for both kinds of sites. Experiments at various temperatures can then 
yield desorption activation parameters, as well as enthalpies and entropies of adsorp- 
tion. Furthermore, the stop-peaks provide a simple method for finding ideal retention 
times in linear non-ideal (i.e. non-equilibrium) chromatography_ 

INTRODUCTION 

Stopped-flow gas chromatography (GC) was introduced by Phillips zt al.’ as 
a method of studying heterogeneous catalysis. It was assumed that the chemical 
reaction took place under conditions of linear equilibrium elution chromatogaphy. 
Katsanos and Hadzistelios’ showed that the stopped-flow technique can be used to 
measure desorption rates in non-equilibrium GC. The latter authors gave a simple 
theoretical analysis, based on a homogeneous surface, but their experimental data for 
desorption of various hydrocarbons from an alumina surface suggest the existence 
of two kinds of adsorption sites with different desorption rates. The idea of a two- 
sited adsorption-desorption is further explored in the present paper, and it is shown 
that not only two desorption rate constants, but also the two corresponding partition 
coefficients, can be derived from the experimental data. 

It was observed that the stopped-flow technique can, with advantage, be ap- 
plied in adsorption-desorption studies if the adsorbate is allowed first to equilibrate 
between the gas and the solid phases at the inlet end of the chromatographic column, 
although this step is not always necessary. Thus, the initial con+tions her&differ from 
those of conventional pulse chromatography. 

In this paper we give a simple mathematical treatment of two-sited non-equilib- 
rium stopped-flow adsorption chromatography, with initial conditions of equilibrium. 
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The theory has .beeh successfully applied to the adsorption of n-hexane and n-heptane 
on modsed alumina, as well as to the adsorption of n-heptane on porous glass. From 
the experimental curves two rate constants and two partition coefficients, one for each 
active site, have been determined using the method described later in the present paper. 
These results will be reported shortly. 

THEORETICAL ANALYSIS 

Consider a conventional tubular CC column filled with a solid adsorbent. Un- 
der isothermal conditions, a small amount of the pure adsorbate (A) is instantaneousiy 

_ introduced as a vapour at the inlet end of the column and allowed to equilibrate with 
the solid. A flow of carrier gas through the column (at a constant velocity) is now 
established, thus destroying the equilibrium between the gas and the solid phases, 
and giving a highly asymmetrical signal at the detector. This signal has a sharp front 
profiIe with long tiling- 

While the chromatographic signal is decaying, the flow of the carrier gas is 
stopped and then restored after a definite time interval; this procedure is repeated, 
the time of each stop being noted. Following each restoration of the carrier gas flow, 
a sharp symmetrical peak (the so-called stop-peak), having a well defined retention 
time and “sitting” on the otherwise asymmetrica taihng signal, is detected, as shown 
in Fig. 1. The stop-peak is caused by the enrichment of the gas phase in the adsorbate 
owing to slow desorption during the interval when no gas flows. The problem to be 
solved here is to determine the area under the curve of each stop-peak as a function 
of the time of the corresponding stop of the carrier gas flow, with the following as- 
sumptions : 

(1) Axial diffusion of the gas in the bed is negIigible. 
(2) The onIy slow processes, determining the rates of equilibration of the ad- 
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Fig. 1. Section of a typical stopped-flow chromatogram for desorption of n-heptane from an alumina 
surface covered with 10% potassium chloride at lld.0”. Ni&Qgen was used as carrier gas with 
a corrected volume ffow-rate of 0.43 ml/xc. The number on-each stop-peak is the area of the peak 
in mV-sec. 
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sorbate between the gas and the solid phases, are adsorption and desorption phe- 
nomena, other “resistances”, e.g., intraparticle diffusion, being negligible. 

The above two assumptions seem reasonable for flow-rates that are high 
enough and small particle diameters. 

(3) Adsorption-desorption takes place at two kinds of active sites, Sr and S2, 
as dictated by experimental evidence. The adsorption isotherm is assumed to be linear 
for both kinds of sites, their fractions (sl and s,) of the total concentration of sites 
remaining constant with time. This is not an unreasonable assumption for small ad- 
sorbate concentrations. 

(4) The adsorbate is introduced in an “infinitesimally” small section of the 
column, so that the feed band can be described by a Dirac delta function 6 (x). The 
use of a square function, such as the difference of two Heaviside step functions u (x) - 
II (X - 6), is more complicated, but leads to equivalent results. 

Nofation 
a 

a' 

c 

CO 

thl 

fR 

ts 

= volume of gas phase per unit length of column (cm2); 
= volume of solid phase per unit length of column (cm”); 
= concentration of the vapour in the gas phase (mole/ml); 
= concentration of the vapour in the gas phase in the interval t’ for 

t, = 0 (mole/ml); 
= Laplace transform of c with respect to t; 
= Laplace transforms of c and c,, with respect to t’; 
= changes in c, q1 and q2 during the stopped-flow interval (mole/ml); 
= Laplace transform of 4c with respect to t ; 

= Laplace transform of dc with respect to t’; 

= double Laplace transform of dc with respect to t and t’: 
= area und’er the curve of a stop-peak (moles); 
= Laplace transform off with respect to t ; 
= rate constants for adsorption on sites S1 and Sz (set-I); 
= rate constants for desorption from sites S, and S2 (set-‘); 
= equilibrium constants for adsorption (partition coefficients) on sites 

S1 and S, (dimensionless); 
= length of column (cm); 
= total mass of injected vapour (moles); 
= integrals defined by eqn. 29 ; 
= transform parameters with respect to t and t ’ ; 
zz?z concentration of the vapour adsorbed on sites S1 and S2 per unit 

volume of solid adsorbent (mole/ml); 
= Laplace transforms of q1 and q2 with respect to t; 
= Laplace transforms of q1 and qr with respect to r’; 
= a'/a = volume ratio of solid and gas phases ; 
= fractions of adsorption-active sites S, and S,; 
= time interval from the beginning of the carrier gas flow to the begin- 

ning of the stopped-flow interval (set); 
= gas hold-up time (set); 
= retention time (set); 
= stopped-flow time (set) ; 
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t ’ = time measured from the end of the stopped-Hay interval (XC); 
V = linear velocity of the carrier gas in the interpW.icIe space (cm/&; 
V = volume of carrier gas passed through the column in the interval t ’ (ml) ; 
3 = volume fiow-rate of carrier gas (ml/set); 

v, = a’i = total volume of solid adsorbent (ml); 
x = distance from inlet end of column (cm); 

y,, y-2 = functions defined by eqns. 36 and 37; 
@ = expression defined by eqn. 9; 
Q1,Q1,92;J2!3~= expressions defined by eqns. 14, 23, 15 and 26, respectively. 

active 

i . 1 -8 ._r 

_.: and 
.- 

where 

Other symb& are defined as they occur in the text. 
For the ahsorption-desorption of the adsorbate (A) on the two kinds of re- 
sites we can: write: 

A+S+A-SS, (I) 
1 

A+Sz--~A-St (2) 
2 

A - S, and A - S, are the two adsorbed species. 
Provided that 1 and 2 are elementary reactions, the equilibrium consta’nts for 

adsorption are related to the rate constants by the equations: 

k 41 
K1 = k_, s.1 = 7 -‘ (3) 

and 
kz 42 

K2F~s’=- (4) 
c 

The probIem will be considered separately for the three intervals t, t, and t’ of the 
time variable. 

IntervaI f 
Under the restrictions stated previously, the concentrations c (xJ), q1 (x,?) 

and q2 (.r,t), as functions of x and t, are determined by the following system of equ.: - 
tions : 

Mass balance ‘in the gas phase: 

ac aql aq2 ac 
at+rat+rat=-v- 

ax 

Rate of adsorption on sites S,: 

aql - = kLcs, - k- lql = k_l (K,c - 
at 

Rate of adsorption <in sites S,: 

aq, - = kzcsr - k_zq2 = k--2 (K2c - 
at 

41) 

42) 

(5) 

(6) 

(7) 



NON-EQUILLBRIUM STOPPED-FLOW GC 7 

Initial-conditions: 

c (x,0) = @S(x), q1 (x,0) = Kl@~(x), 42 (x0) = K2@@) (8) 

where @ = 
m 

a + (K1 -I- K2) a’ 
(9) 

Conditions 8 are due to the initial equiiibration of the vapour between the two phases, 
taking into consideration eqns. 3 and 4. 

Substituting eqn. 6 for &I~/& and eqn. 7 for i3qz/at in eqn. 5, and taking 
the Laplace transform with respect to t of the resulting equation, as well as those of 
eqns. 6 and 7, we obtain: 

CC 
V dx_ -I- (P -I- rk-1 KI + rk_2K2) C - r (k_,Q, + k-2Qz) = c (x,0) (10) 

a = k_,K,C -I- 41 (x,0) 
p f k-1 

(11) 

and 

0 = k-&C + 42 (GO) 
-2 

P f k-2 
w 

Substitution of eqn. 11 for 0, and of eqn. 12 for Q2 in eqn. 10, and rearrangement 
gives : 

g- + SIC = $ [c (x,0) --I- 
P 

T;_ 41 WV -I- p ‘:a, q2 cm] (13) 
1 

where 

(14) 

The initial conditions 8 are now substituted for c (x,0), qI (x,0) and q2 (x,0) 

in eqn. 13, giving the following differential equation in C: 

g + Q2,C = Q,S(x) 

where 

This equation can be solved by multiplying it by the integrating factor eel= and inte- 
grating between the limits -co and x. The result is 

By taking the inverse Laplace transform of this equation with respect to t, we can 
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find c as a function of x and 1. As, however, the explicit form of c (x,t) is not required 
for the solution of our problem, the inverse Laplace transform is postponed to a 
later stage ii_ order to keep the calcuiations simple. 

Inrervul t, 
During this time interval the flow of the carrier gas through the column is 

stopped, so that VI = 0, and the situation is described by the following system of equa- 
tions, which are analogous to eqns. 5, 6 and 7: 

and 

By keeping the. interval t, sufficiently small, so that the total change in c 
during this interval is small, we can write AC/to w &$3t,, and eqn. 17, after substi- 
tuting in it eqns. 18 and 19 for &&?t, and Clq2/Zbs, respectivety, gives: 

dc = [k_, (ql - K,c) f k_2 (q2 - IQ)] rt, (20) 

The physic& meaning of& is that it represents the enrichment of the gas phase in the 
adsorbate, due to slow desorption during the stopped-flow interval t,. 

Similarly from eqns. 18 and 19 we obtain the relationships: 

and 

obviously, dc, Aql and Aq2 are functions of: (a) the position x in the c~lunm, (b) the 
time t when the flow of the carrier gas was stopped and (c) the duration of the stop 
t,. which is required to be kept constant throughout a chromatographic run. 

Interval t’ 

At the end of the stopped-flow interval, the fiow of the carrier gas through the 
column is restored and the situation is therefore again described by eqns. 5, 6 and 7 
with t’ in place oft, and c, ql, q2 now being functions of x, t, t,, t’. The initial conditions 
for this interval are: 

c WJ,,O) = c (x,0 + AC (x,&t,) 

qr (~,t,~,,O~ = qr (~1 f &, (xJ,~J = ql(-~t) 

and 
(21) 

q2 WffS,O) = 42 (XJ) + 42 WJJ - 42 W) 



NON-EQUILIBRIUM STOPPED-FLOW GC 9 

where dq, and dq2, as a first approximation, are taken to be negligible compared with 
ql and qt, respectively. 

Substituting eqns. 6 and 7 in eqn. 5, as-before, taking the Laplace transform 
with respect to t’, and eliminating & and &, +we obtain the following relationship, 
which is analogous to eqn. 13: 

g + s;e = + [c (x,t,t,,O) + 
rk-, 

I P' -i- k-1 
41 W,LO) -t 

where 

12;‘; = L (p’ + rk_,K, + rk_& - rk?. 1Kl . rki,K2 

V p’tk-, - p'tk-, ) (23) 

Now, eqn. 22 can also be written for t, = 0, i.e., without stopping the carrier 
gas, which means that the total time is artificially divided into two intervals, t and t’, 
the second being simply the continuation of the first. Denoting the concentration of 
the gas phase in this instance by c,,, we have: .- 

-. 
de,, 1 

dx t- J--+0 = ; c (x,t) + 
rk-, 

pI + k_, ql hf) -!- 

If this equation is subtracted from eqn. 22, after substituting in the latter the initial 
conditions 21, the following relationship is obtained : 

-& [z kt.t.~P’~] f qdc (_r,t,r,,p’) = ;Ac (x,t,r,,O) 

where dc (x,&t&) = c - cO, and Llc (s,t,t,,O) is given by eqn. 20. 
The above i-elationship is the Laplace transform with respect to t’ of an equa- 

tion describing 4c (x,t,f,,t’) as a function of x and t’, after restoring the carrier gas 
flow, i-e., the effect of the chromatographic process on dc, which is formed during 
the stopped-flow interval t,. 

Substituting eqn. 20 for 4c (x,t,f,,O) in eqn. 24, taking the Laplace transform 
with respect to t, and finally using eqns. 11, 12 and 16, as well as conditions 8, we 

obtain, after rearrangement: 

where 

I @is(x) - p.Q,e- W 
I _ . 

k_,Kz 

P -I- k--3 ) 

*. 

(25) 

This relatively simple differential equation can be solved to find dC as a func- 
tion of X, by using the Laplace transform with respect to x. The result is 

(27) 



10 N. A. KATSANOS, G. KARAISKAKIS, 1.2. KARABASIS 

For x = I, i.e., at the detector, this equation gives the double Laplace trans- 
form (with respect to t and t’) of the stop-peak. The area under the curve of this stop- 
peak in the form of its Laplace transform with respect to I, is 3 

F = J; AC (Z,p,t,,t’) dV = ii J,m AC (Z,p,t,,t’) dt’ (28) 

The integral can be evaluated by using the well known property of the Laplace trans- 
form (we omit the constants I and t, from the independent variables of AC): 

m, = Jbmbt’“AC(p,t’) dt’ = (-1)” lim d” C~~(P,p’)l 
(P’-tO> dp’” (29) 

The value of the integral of eqn. 28 is then m, and is found from eqn. 27 (with x = Z) 
by letting pl = 0, and using eqns. 14 and 15. The result is m, = ~Q34!%-*1’ and thus 

F = l%2$#je-*1’ (30) 

Before taking the inverse Laplace transform of this equation, so as to findf 
as a function of t, it is interesting to calculate the first absolute moment (~J’J of the 
stop-peak, which (for negligible longitudinal diffusion) is the retention time tR. 
Using eqn. 29 we find that 

ml tR = & = - = (1 f rKl + rK2) (e%’ - 1) 
set 

m. VJA 
(31) 

If -Q,Z is suf&iently small, the approximation e%’ = 1 + Q,Z can be made and eqn. 
31 thus becomes 

tR=d(l +rK,+r&) 
* - 

Inverse Laplace transform of eqn. 32 with respect to t is not required, as tR is inde- 
pendent of p, and continuity restrictions require that tR be also independent of t. This 
is confirmed experimentally (see Fig. 1). 

Recognising now that I/V = tM and rK, and rK, are the partition ratios k’ 
and k” for active sites SL and St, respectively, we can rewrite eqn. 32 as 

tR = tM (1 + k’ f k”) 
_. 

(33) 

Comparing this with the well known relationship tR = tM (1 f k) of linear ideal 
(i.e., equilibrium) chromatography, we conclude that the stop-peaks provide a simple 
method for finding ideal retention times in Iinkar non-ideal (Le., non-equilibrium) 
chromatography, accepting, of course, the assumptions and approximations used to 
derive eqn. 32. _ 

Other moments, such as the second central moment p2, can easily be calculated 
with the aid of eqn. 29. 

The area under the curve of the stop-peak as a function off is found by taking 



NON-EQUILZBRIUM STOPPED-FLOW GC 11 

the inverse Laplace transform with respect to t of eqn. 30. This is given by the re- 
lationship : 

f= 
mrt, -(k_&tk_~K~,V,/+ 

1 +rW, i-Q e 

- 

1 
k_,K& [2fqt-f&J*] e-k-~~t--t*f’ i_ 

k_&& [2wr(t-tAf)*] .cz-~-~(~-‘~’ t y1 + ry2 (34) 

where 

yyl and 1y2 are convolutions3 of two functions, each being enclosed within the brackets 

{ 1: 

y1 = 
C 
k_ JCrI,, [2w;(t - t,,)‘] e-‘- l’f-rar) 

and 

7,u2 = 

and & and 1, are hyperbolic Bessel functions of the zeroth and first order, respectively, 
with the arguments enclosed within the brackets [ ]_ 

Obviously, eqn. 34 must be reduced to a simpler form, so that it can be com- 
pared with experimental data, and this can be achieved by using certain approxi- 
mations : (a) the gas hold-up time tnf, which is negligible compared with t, can be omit- 
ted, and (b) it can be written I0 (z) 2: I and 1, (z) 2: z[2, as was done before”, assuming 
that the argument of the Bessel functions is small. With these approximations eqn. 
34 reduces to: 

f = yle-k-l’ f y2e-k--r’ (35) 

where 

Yl = 
mrt&-,K, 

( 
I _ k-,K,Vs k-1 f k_, 

1 +r(fGtfG) -‘- - k_, - k_= V 1 
e-(k-~K~lk-~K~W’~~i’ 

(36) 

and 

Y2 = 
mrt,k_,Kz k-,&V, k-, f k-2 

1 +r(K, +&I C 
If p - 

k_l - k_2 1 
e-_(k_&+k_2K2Ws/ti 

. (37) 

The area recorded by the instrument should be proportional to f and if the 
constant of proportionality is A, this area is Af. If several stop-peaks are created by 
repeatedly stopping and restoring the carrier gas flow, then a plot of In (Af) against t 
should initially yield a curve, such as that of Fig. 5 in ref. 2. After a certain time, how- 
ever, the plot becomes linear because one of the terms, say the first, of eqn. 35 becomes 
negligibly small. The slope of this straight line then gives the value of -k_z, and its 
intercept with the y-axis equals In (AYa. By constructing a similar plot of the differ- 
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ences between the experimental points and those found by extrapoiation of the first 
straight line, a new straight line is obtained with slope -k_l and y-intercept In (;lY,). 

The experiment can be repeated, at the same temperature, with various flow- 
rates ( V), yielding various values of 2Y, and AY,, from which the two partition coeffi- 
cients KI’ and K, can then be determined as follows. We add eqns. 36 and 37: 

y, + y2 = 
mrfs (k-,4 + k-&z) e-(k-~K~+k_~K~)Vs/~ 

1 -I-r&t&) 

and we see that a plot of In (AY, f IY,) against l/ P should be linear with slope 
- (k_,K, + k_,Kd Vs. By using the previously determined values of k_, and k-, 
and the known value of Vs. we obtain an algebraic equation in KI and &_ A second 
equation can be obtained from the ratio of corresponding intercepts ;iY, and AY,. 
These two equations then can be solved to find KI and K2. 

Sets of experiments at various temperatures will permit the calculation of 
desorption activation energies and entropies of activation from the variation of k-, 
and k_, with temperature, as well as adsorption enthalpies and entropies from the 
variation of KI and K2 with temperature_ Data of this kind will be reported elsewhere. 
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